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Abstract

A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known
high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyper-
bolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes.
Boundary conditions formulated need only one unknown variable for third-order FC-ENO scheme and two unknown
variables for fifth-order FC-ENO scheme. Numerical test results of the proposed FC-scheme were compared with tradi-
tional TVD, ENO and WENO schemes to demonstrate its high-order accuracy and high-resolution.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In computational fluid dynamics, several kinds of the high-resolution numerical schemes were developed to
simulate the multi-scale fluid structures. The spectral method [1] has higher accuracy but its applicability is
limited to simple geometries with periodic boundary conditions. The compact finite difference scheme [2] based
on a compact stencil is also of relatively high-order of accuracy, but it high-order accuracy is challenged in
capturing discontinuities. Some new hybrid schemes coupling the spectral method, the compact scheme or
other schemes together have proposed with the idea of total variation diminishing (TVD) [3] or essentially
non-oscillatory (ENO) [4,5] for decades, such as finite spectral ENO scheme [6], hybrid compact scheme
[7–11] and dispersion-controlled dissipative (DCD) schemes [12].

In order to develop a numerical scheme, the following hyperbolic conservation law is usually accepted as a
model equation,
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Its general semi-discrete form can be written as
duj

dt
¼ � 1

Dx
ðA�1Bf Þj. ð2Þ
Cockburn and Shu [7] developed the nonlinear stable compact schemes using the TVDM (total variation
diminishing in the means) property that reads
TV ð�unþ1Þ 6 TV ð�unÞ. ð3Þ
The scheme requires a symmetric matrix A and the ‘‘reconstruction’’ of variable u from the mean variable �u,
uj ¼ ðA�1�uÞj. ð4Þ
Ravichandran [8] improved this kind of the schemes and a wider class of the compact upwind schemes was
developed without the limitation of a symmetric matrix A. These compact schemes were summarized in
Ref. [8], and Tolstykh’s third-order compact scheme with one point upwind numerical flux [14,17], Cockburn
and Shu’s third-order compact with 2-point fully upwind flux [7], Ma and Fu’s third-order compact scheme
with 2-point upwind weighted flux and fifth-order compact scheme with 4-point upwind weighted flux
[15,18] can be taken to be in the same family. In addition, Adams and Shariff [9] proposed a hybrid com-
pact-ENO scheme for shock–turbulence interaction problems. Following the same basic approach, Pirozzoli
[10] derived a conservative hybrid compact-WENO scheme. Ren [11] presented a fifth-order conservative
hybrid compact-WENO scheme for shock-capturing calculation, which is constructed through the weighted
average of the conservative compact scheme and WENO scheme. Jiang [12] proposed a class of the disper-
sion-controlled dissipative schemes based on dispersion conditions [13], and the schemes are a kind of hybrid
upwind schemes, and can be used to capture shocks without any numerical oscillations and free parameters,
but not compact.

The tri-diagonal matrix inversion is required in applications of the mentioned above schemes, and some
hybrid schemes need a smoothness indicator to switch to schemes in shock-capturing scheme whenever nec-
essary. In the paper, a finite compact difference method is proposed based on the special upwind compact
relation requiring only bi-diagonal matrix inversion, and its flow flux can be calculated by using the adja-
cent known flux, and high-resolution FC-TVD, FC-ENO schemes are constructed with the TVD or ENO
limiters.

2. Numerical methodology

Take the scalar hyperbolic conservation equation (1) as example, the flux function f(u) can be split into two
parts, i.e., f(u) = f+(u) + f�(u) with df+(u)/du P 0 and df�(u)/du 6 0. The semi-discrete conservative difference
equation of (1) in a general form can be written as
duj

dt
þ 1

Dx
ðhjþ1=2 � hj�1=2Þ ¼ 0; ð5Þ
where the numerical flux is defined as hjþ1=2 ¼ hþjþ1=2 þ h�jþ1=2. One kind of the upwind compact schemes is
expressed as
aþF þj�1 þ bþF þj ¼
1

Dx

Xr

n¼�r

aþn f þjþn; ð6aÞ

a�F �jþ1 þ b�F �j ¼
1

Dx

Xr

n¼�r

a�n f �jþn; ð6bÞ
where F �j ¼
of�j
ox . With application of Taylor expansions, it is easy to show the scheme is of third-order accu-

racy in three grid point stencil (r = 1) if these coefficients are defined as
aþ ¼ 2; bþ ¼ 4; aþ�1 ¼ �5; aþ0 ¼ 4; aþ1 ¼ 1; ð7aÞ
a� ¼ 2; b� ¼ 4; a� ¼ �1; a� ¼ �4; a� ¼ 5. ð7bÞ
�1 0 1
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The scheme Eq. (6) is well introduced literatures, such as in Refs. [2,16]. These coefficients for a fifth-order
accuracy scheme [15,18] in a five grid point stencil (r = 2) can be given as
aþ ¼ 24; bþ ¼ 36; aþ�2 ¼ �3; aþ�1 ¼ �44; aþ0 ¼ 36; aþ1 ¼ 12; aþ2 ¼ �1; ð8aÞ
a� ¼ 24; b� ¼ 36; a��2 ¼ 1; a��1 ¼ �12; a�0 ¼ �36; a�1 ¼ 44; a�2 ¼ 3. ð8bÞ
In order to examine different compact difference approximations, we assume f = au and a > 0 in Eq. (1) with
the initial condition u(x, 0) = eikx. The exact solution of Eq. (1) is u(x, t) = eik(x�at) and the solution of different
difference schemes can be obtained as
uðxj; tÞ ¼ e�kr
at
Dx eikðxj�ki

at
kDxÞ. ð9Þ
Fig. 1 shows variations of ki and kr of the schemes using (7), (8) and several schemes with three-point implicit
operator versus scaled wave number a(a = kDx). These schemes include the third-order upwind scheme used
by Cockburn et al [7], the third-order Tolstykh upwind scheme used by Ravichandran [8] and the fifth-order
upwind scheme used by Pirozzoli [10]. The resolution of the fifth-order schemes is found to be better than the
third-order schemes; For the third-order schemes, the phase error of scheme (7) is between the schemes of
Refs. [7,8], and appears closest to the exact solution. From the curve of kr, the dissipation error of scheme
(7) is less than other two third-order schemes if a < 2.3664, and it becomes larger than the scheme of Ref.
[7] when a P 2.3664. For fifth-order schemes, both ki and kr of scheme (8) are larger than the fifth scheme
of Ref. [10].

Supposing F �j ¼ 1
Dxðĥ

�
jþ1=2 � ĥ

�
j�1=2Þ, Eq. (6) can be re-written in conservative form,
ĥ
þ
jþ1=2 ¼

1

bþ
Xr

n¼�rþ1

Xr

l¼n

aþl

 !
f þjþn � aþĥ

þ
j�1=2

 !
; ð10aÞ

ĥ
�
jþ1=2 ¼

1

b�
Xr

n¼�rþ1

Xr

l¼n

a�l

 !
f �jþn � a�ĥ

�
jþ3=2

 !
. ð10bÞ
Obviously, the numerical fluxes ĥ
þ
jþ1=2ðj ¼ 0; . . . ;NÞ and ĥ

�
jþ1=2ðj ¼ �1; . . . ;N � 1Þ can be calculated directly

from Eq. (10) that requires only bi-diagonal matrix inversion in characteristic direction once the numerical

fluxes ĥ
þ
�1=2 and ĥ

�
Nþ1=2 are given (see boundary formula in Section 2.2). And it is also easy to use TVD or

ENO limiters in each ĥ
þ
jþ1=2ðĥ

�
jþ1=2Þ to obtain the new numerical flux being of TVD or ENO properties.

2.1. Third-order accurate finite compact TVD scheme

Following the notation in Ref. [7], the final numerical flux is defined as
hþjþ1=2 ¼ f þj þ df þðmÞjþ1=2; h�jþ1=2 ¼ f �jþ1 � df �ðmÞjþ1=2; ð11Þ
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Fig. 1. Variations of of ki and kr of several schemes vs a.
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where df þðmÞjþ1=2 ¼mmðdf þjþ1=2;Dþf þj ;Dþf þj�1Þ, df �ðmÞjþ1=2 ¼mmðdf �jþ1=2;Dþf �j ;Dþf �jþ1Þ, df þjþ1=2 ¼ ĥ
þ
jþ1=2� f þj , df �jþ1=2 ¼

f �jþ1� ĥ
�
jþ1=2, Dþf �j ¼ f �jþ1� f �j , mm(a1,a2,a3) is defined as
mmða1; a2; a3Þ ¼

a1 if signða1Þ ¼ � � � ¼ signða3Þ; and ja1j ¼ minðja1j; ja2j; ja3jÞ;
a2=2 if signða1Þ ¼ � � � ¼ signða3Þ; and ja2j ¼ minðja1j; ja2j; ja3jÞ;
a3=2 if signða1Þ ¼ � � � ¼ signða3Þ; and ja3j ¼ minðja1j; ja2j; ja3jÞ;
0 otherwise.

8>>><
>>>:

ð12Þ
The second and third values of the function mm(a1,a2,a3) will be discussed in Section 2.2. Taking f(u) = u(x, t),
uðx; 0Þ ¼ 1; � 1
5
6 x 6 1

5
;

0; otherwise

�

as example, we can investigate the behavior of different numerical flux in the case with discontinuities. The
numerical flux calculated by Eq. (10) with N = 100 is shown in Fig. 2a and the flux oscillates in discontinuous
points x = � 0.2 and x = 0.2. Fig. 2a also shows the flux computed with Eqs. (10) and (11), as used in Ravi-
chandran method [8] and Ma and Fu’s third order compact scheme [15]. In Fig. 2a, the region (or regions, if
exist) where the first argument in Eq. 12 is chosen is only depicted. It is indicated that the region of flux is only
a part (x < � 0.2) of the entire region. This shows that, in a large region behind the discontinuous point,
the compact flux of Ravichandran method may not be used. So we use the following equation to instead
of Eq. (10).
ĥ
þ
jþ1=2 ¼

1

bþ
Xr

n¼�rþ1

Xr

l¼n

aþl

 !
f þjþn � aþhþj�1=2

 !
; ð13aÞ

ĥ
�
jþ1=2 ¼

1

b�
Xr

n¼�rþ1

Xr

l¼n

a�l

 !
f �jþn � a�h�jþ3=2

 !
. ð13bÞ
In Eq. (13), the fluxes hþj�1=2 and h�jþ3=2 of special TVD or ENO characteristics constructed in advance may not

be the compact fluxes ĥ
þ
j�1=2 and ĥ

�
jþ3=2 in Eq. (10). The obvious property of Eq. (13) is that it applies the

obtained high resolution fluxes hþj�1=2 and h�jþ3=2 to solve ĥ
þ
jþ1=2 and ĥ

�
jþ1=2, but the schemes with a three-point

stencil of implicit operator cannot do so.
The flux computed with Eqs. (13) and (11) is shown in Fig. 2b. Similarly, Fig. 2b shows only the regions

where the first argument in Eq. (12) is chosen. In the figure, most fluxes are displayed either before or behind
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Fig. 2a. Contributions of flux function from Eq. (10) or Ref. [8] (N = 100).
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discontinuous points. That is to say, the regions where their fluxes are calculated with Eq. (13) occupied much
more part than that by Eq. (10), thus the scheme can produce better approximate accuracy.

Fig. 2c shows the comparison between numerical results of Ravichandran’s scheme (Ref. [8], namely, Eqs.
(13) and (11)) and FC-TVD scheme (Eqs. (10) and (11)). The FC-TVD scheme demonstrates its better
performance.

Lemma 1. The semi-discrete scheme with numerical flux expressed in Eqs. (11)–(13) is TVD.

Proof.
hjþ1=2 � hj�1=2 ¼ f þj þ df þðmÞjþ1=2 þ f �jþ1 � df �ðmÞjþ1=2 � f þj�1 � df þðmÞj�1=2 � f �j þ df �ðmÞj�1=2

¼ Dþf þj�1 þ df þðmÞjþ1=2 � df þðmÞj�1=2 þ Dþf �j � df �ðmÞjþ1=2 þ df �ðmÞj�1=2 ¼ �Cjþ1=2Dþuj þ Dj�1=2Dþuj�1;
where
Cjþ1=2 ¼ �ðDþf �j � df �ðmÞjþ1=2 þ df �ðmÞj�1=2Þ=Dþuj;

Dj�1=2 ¼ ðDþf þj�1 þ df þðmÞjþ1=2 � df þðmÞj�1=2Þ=Dþuj�1.
By virtue of the flux splitting, Dþf þj�1=Dþuj�1 P 0, if D+uj�1 > 0, then Dþf þj�1 P 0, df þðmÞjþ1=2 P 0 and df þðmÞj�1=2 P 0.

If dfþðmÞj�1=2 ¼ 0, then Djþ1=2 ¼ ðDþfþj�1 þ dfþðmÞjþ1=2Þ=Dþuj�1 P 0.

If dfþðmÞj�1=2 > 0, then dfþðmÞj�1=2 6 Dþfþj�1=2 6 Dþfþj�1 þ dfþðmÞjþ1=2.
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So that Djþ1=2 ¼ ðDþfþj�1 þ dfþðmÞjþ1=2 � dfþðmÞj�1=2Þ=Dþuj�1 P 0.

If D+uj�1 < 0, then Dþfþj�1 6 0, dfþðmÞjþ1=2 6 0 and dfþðmÞj�1=2 6 0.

If dfþðmÞj�1=2 ¼ 0, then Djþ1=2 ¼ ðDþfþj�1 þ dfþðmÞjþ1=2Þ=Dþuj�1 P 0.

If dfþðmÞj�1=2 < 0, then dfþðmÞj�1=2 P Dþfþj�1=2 P Dþfþj�1 þ dfþðmÞjþ1=2.

So that Djþ1=2 ¼ ðDþfþj�1 þ dfþðmÞjþ1=2 � dfþðmÞj�1=2Þ=Dþuj�1 P 0. And also,Cj+1/2 P 0 can be deduced in the

similar way. According to Harten [3], the scheme expressed in Eqs. (11)–(13) is TVD scheme, and referred as
to the FC-TVD scheme in this paper. h
2.2. Third-order accurate finite compact ENO scheme

By using the formula Eq. (23) of hþ�1=2 and h�Nþ1=2 in Section 3.1 and Taylor expansion, one can easily obtain
df �jþ1=2 ¼
1

2

of �j
ox

DxþOðDx2Þ; ð14aÞ

Dþf �j ¼
of �j
ox

DxþOðDx2Þ. ð14bÞ
In order to make the value of the limiter function mm(a1,a2,a3) has the same magnitude, the halves of the sec-
ond and third arguments (a2 and a3) in Eq. (12) are taken. Notice that the function mm(a1,a2,a3) used in Refs.
[7,8] is defined as
mmða1; . . . ; akÞ ¼
s min

16i6k
jaij if signða1Þ ¼ � � � ¼ signðakÞ ¼ s;

0 otherwise.

(

Eq. (14) also shows that, in smooth regions away from critical points, a2 and a3 in mm(a1,a2,a3) are asymp-
totically of the same sign of a1 and half in its magnitude (here the critical points are defined as the points in
which f+(u)x = 0 or f�(u)x = 0, however, the critical points in Ref. [7] are defined in means as f þð�uÞx ¼ 0 or
f �ð�uÞx ¼ 0). Therefore, for sufficiently small Dx, Eq. (11) yields
h�jþ1=2 ¼ ĥ
�
jþ1=2.
At critical points, the scheme is of first-order accuracy as the same to all TVD schemes. To overcome this
difficulty, a modified function of mmða1; a2; a3Þ, instead of mm(a1,a2,a3), is used
mmða1; a2; a3Þ ¼
a1 if ja1j 6 MDx2;

mmða1; a2; a3Þ otherwise,

�
ð15Þ
where the constant M is independent of Dx. Hence the third-order finite compact ENO (FC-ENO-3) scheme is
obtained.

2.3. Fifth-order accurate finite compact ENO scheme

The fifth-order finite compact ENO (FC-ENO-5) scheme will be constructed in this chapter. The Taylor
expansions of ĥ

�
jþ1=2 of Eqs. (6) and (8) read
ĥ
þ
jþ1=2 ¼ f þj þ

1

2
f þ0j Dxþ 1

12
f þ00j Dx2 þ oðDx3Þ;

ĥ
�
jþ1=2 ¼ f �jþ1 �

1

2
f �0jþ1Dxþ 1

12
f �00jþ1Dx2 þ oðDx3Þ.
So, we define a new numerical flux functions as
hþjþ1=2 ¼ f þj þ
1

2
mðDþf þj ;Dþf þj�1Þ þ Df þðmÞjþ1=2; ð16aÞ

h�jþ1=2 ¼ f �jþ1 �
1

2
mðDþf �jþ1;Dþf �j Þ þ Df �ðmÞjþ1=2; ð16bÞ
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where
Df þðmÞjþ1=2 ¼
mm1ðDf þjþ1=2;D

þ
j ;D

þ
jþ1Þ if jDþf þj j 6 jDþf þj�1j

mm2ðDf þjþ1=2;D
þ
j ;D

þ
j�1Þ otherwise,

(
ð17aÞ

Df �ðmÞjþ1=2 ¼
mm2ðDf �jþ1=2;D

�
jþ1;D

�
jþ2Þ if jDþf �jþ1j 6 jDþf �j j;

mm1ðDf �jþ1=2;D
�
jþ1;D

�
j Þ otherwise,

(
ð17bÞ

Dþf �j ¼ f �jþ1 � f �j ;D
�
j ¼ Dþf �j � Dþf �j�1;

Df þjþ1=2 ¼ ĥ
þ
jþ1=2 � f þj �

1

2
mðDþf þj ;Dþf þj�1Þ; ð18aÞ

Df �jþ1=2 ¼ ĥ
�
jþ1=2 � f �jþ1 þ

1

2
mðDþf �jþ1;Dþf �j Þ. ð18bÞ
And then m(a1,a2) is defined as
mða1; a2Þ ¼
a1 if ja1j 6 ja2j;
a2 otherwise,

�

mm1(a1,a2,a3) and mm2(a1,a2,a3) are defined as
mm1ða1; a2; a3Þ ¼
a1 if ja1j ¼ minðja1j; ja2j; ja3jÞ;
�ai=6 otherwise and jaij ¼ minðja1j; ja2j; ja3jÞ;

�
ð19aÞ

mm2ða1; a2; a3Þ ¼
a1 if ja1j ¼ minðja1j; ja2j; ja3jÞ;
ai=3 otherwise and jaij ¼ minðja1j; ja2j; ja3jÞ.

�
ð19bÞ
Making Taylor expansion analysis of (18) yields
Df þjþ1=2 ¼
� 1

6
f þ00j Dx2 þOðDx3Þ if jDþf þj j 6 jDþf þj�1j;

1
3
f þ0j Dx2 þOðDx3Þ otherwise,

(
ð20aÞ

Df �jþ1=2 ¼
� 1

6
f �00jþ1Dx2 þOðDx3Þ if jDþf �jþ1j 6 jDþf �j j;

1
3
f �00jþ1Dx2 þOðDx3Þ otherwise,

(
ð20bÞ

Dþk ¼ f þ00j Dx2 þOðDx3Þ; k ¼ j� 1; j; jþ 1;

D�k ¼ f �00jþ1Dx2 þOðDx3Þ; k ¼ j; jþ 1; jþ 2.
So, in smooth regions away from the point of f �00j ¼ 0 for sufficiently small Dx, the first arguments of
mm1(a1,a2,a3) and mm2(a1,a2,a3) will be chosen, which yields
h�jþ1=2 ¼ ĥ
�
jþ1=2.
Hence, the scheme is of fifth-order accuracy. Meanwhile, the coefficients of the second and third arguments of
mm1(a1,a2,a3) and mm2(a1,a2,a3) are determined with the second-order derivative in formula (20).

To overcome the drawback of accuracy degeneration at the points of f �00j ¼ 0, we modify mm1(a1,a2,a3)
and mm2(a1,a2,a3) as
mm1ða1; a2; a3Þ ¼
a1 if ja1j 6 MDx3;

mm1ða1; a2; a3Þ otherwise,

�
ð21Þ

mm2ða1; a2; a3Þ ¼
a1 if ja1j 6 MDx3;

mm2ða1; a2; a3Þ otherwise,

�
ð22Þ
where M is a constant independent of Dx and is set to be one in this paper.
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3. Boundary formulations and time discretization

3.1. Three points boundary formulation

Using the four points stencil (xj�1,xj,xj+1,xj+2) to approximate f 0j , we can get
f þ0j ¼
�11f þj�1 þ 18f þj � 9f þjþ1 þ 2f þjþ2

6Dx
þOðDx3Þ;
then hþ�1=2 can be obtained as
hþ�1=2 ¼
1

3
f þ�1 þ

5

6
f þ0 �

1

6
f þ1 . ð23aÞ
Similarly, the flux
h�Nþ1=2 ¼ �
1

6
f �N�1 þ

5

6
f �N þ

1

3
f �Nþ1. ð23bÞ
The boundary fluxes hþ�1=2 and h�Nþ1=2 require only two boundary values at the node of x0, xNðf þ�1 for hþ�1=2;
f �Nþ1 for h�Nþ1=2Þ.

3.2. Five points boundary formulation

Using the six points stencil (xj�2,xj�1,xj,xj+1,xj+2,xj+3) to approximate f þ0j , we have
f þ0j ¼
�12f þj�2 � 65f þj�1 þ 120f þj � 60f þjþ1 þ 20f þjþ2 � 3f þjþ3

60Dx
þOðDx5Þ.
The flux hþ�1=2 is obtained as
hþ�1=2 ¼
1

60
ð�3f þ�2 þ 27f þ�1 þ 47f þ0 � 13f þ1 þ 2f þ2 Þ. ð24aÞ
Similarly,
h�Nþ1=2 ¼
1

60
ð2f �N�2 � 13f �N�1 þ 47f �N þ 27f �Nþ1 � 3f �Nþ2Þ. ð24bÞ
The boundary fluxes hþ�1=2 and h�Nþ1=2 require only two boundary values ðf þ�2 and f þ�1 for hþ�1=2; f
�
Nþ1 and

f �Nþ2 for h�Nþ1=2Þ.
In the following computations, the boundary formulation (23) is applied for the FC-TVD and FC-ENO-3

schemes, and the boundary formulation (24) is accepted in the FC-ENO-5 scheme.
3.3. Stability analysis

In order to determine the stability of the compact scheme (7) with boundary formulation (23) and the com-
pact scheme (8) with boundary formulation Eq. (24), the semi-discrete approximation of Eq. (1) under the
condition of the positive flux (f = au with a > 0) can be expressed in the compact matrix notation of Pirozzoli
[10] as
ut ¼ �
a
Dx

CA�1ðBuþ bÞ; ð25Þ
where u = (u0,u1, . . .,uN)T. For the scheme (7) with boundary formulation (23),
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and b = (1/3u0,0, . . ., 0,uN+1)T. For the scheme (8) with boundary formulation (24),
A ¼

1

24 36
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. . .

.

24 36
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60
� 13
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2
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3 47 11
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6666666666664
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N1�N
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. .
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.

�1 1

2
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75

N�N1

;

and b = (27/60u�1 � 3/60u�2,3u�1,0, . . ., 0, � uN+1,11uN+1 � uN+2)T, where N1 = N + 1.
As discussed in Refs. [2,10], the stability condition for the semi-discrete equation requires that all eigen-

values of the matrix S = �CA�1B have a negative real part. Figs. 3a and b showing numerical results of
the eigenvalue spectra of matrix S demonstrated that the third-order upwind scheme (7) with boundary
formulation (23) and the fifth-order upwind scheme (8) with boundary equation (24) are linearly stable.

3.4. Time discretization

Discretizations of time-derivative are performed by both the third-order TVD Runge–Kutta method [20]
for TVD, FC-TVD and FC-ENO-3 schemes, and the fourth-order Runge–Kutta for ENO, FC-ENO-5 and
5-WENO schemes.

For the ordinary differential equation
du
dt
¼ LðuÞ;
the third-order TVD Runge–Kutta method [20] is expressed as
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Eigenvalue spectra of the upwind compact schemes, s: N = 50; ,: N = 100; n: N = 200; h: N = 400, (a) The third-order upwind
e (7) with boundary formulation (23). (b) The fifth-order upwind scheme (8) with boundary formulation (24).
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uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3

4
un þ 1

4
uð1Þ þ 1

4
DtLðuð1ÞÞ;

unþ1 ¼ 1

3
un þ 2

3
uð2Þ þ 2

3
DtLðuð2ÞÞ.
The fourth-order Runge–Kutta method is written as
uð1Þ ¼ un þ 1

2
DtLðunÞ;

uð2Þ ¼ un þ 1

2
DtLðuð1ÞÞ;

uð3Þ ¼ un þ 1

2
DtLðuð2ÞÞ;

unþ1 ¼ 1

3
ð�un þ uð1Þ þ 2uð2Þ þ uð3ÞÞ þ 1

6
DtLðuð3ÞÞ.
4. Numerical examples

(1) Linear transport equation. The transport equation is given as
ou
ot
þ ou

ox
¼ 0; �p 6 x 6 p;

uðx; 0Þ ¼ sin x; �p 6 x 6 p; periodic boundary condition.
The example is used to examine the accuracy of FC-TVD, FC-ENO-3 and FC-ENO-5 schemes. The
TVD, ENO-3 (third-order ENO) and 5-WENO (fifth-order WENO) schemes are also appplied. Accu-
racy comparisons are shown in Tables 1 and 2. The tables indicate that FC-TVD is more accurate than
TVD, FC-ENO-3 gives third-order of accuracy and is better than FC-TVD, and FC-ENO-5 reaches the
fifth-order accuracy, although its order is slightly less than the 5-WENO’s, its errors decrease about 5–10
times lower than the 5-WENO’s.

(2) ou
ot þ ou

ox ¼ 0, � 1 6 x 6 1.
This equation is taken as the second test case there
uðx; 0Þ ¼ 1; � 1
5
6 x 6 1

5
;

0; otherwise

�
with a periodic boundary condition.
1
risons of several schemes, t = 1

e N L1 error L1 order L1 error L1 order

O-3 20 0.2618e � 2 – 0.7115e � 3 –
40 0.4793e � 3 2.449 0.1021e � 3 2.801
80 0.7645e � 4 2.648 0.1334e � 4 2.936

160 0.1101e � 4 2.796 0.1687e � 5 2.983
320 0.1525e � 5 2.852 0.2143e � 6 2.977

D 20 0.5418e � 1 – 0.2171e � 1 –
40 0.2265e � 1 1.258 0.5573e � 2 1.962
80 0.8280e � 2 1.452 0.1211e � 2 2.202

160 0.3134e � 2 1.402 0.2522e � 3 2.264
320 0.1101e � 2 1.509 0.5112e � 4 2.303
20 0.6460e � 1 – 0.2610e � 1 –
0 0.2983e � 1 1.115 0.8240e � 2 1.663

80 0.1217e � 1 1.293 0.2136e � 2 1.948
160 0.5052e � 2 1.268 0.6277e � 3 1.767
320 0.2059e � 2 1.295 0.1679e � 3 1.902



Table 2
Comparisons of several schemes, t = 1

Scheme N L1 error L1 order L1 error L1 order

FC-ENO-5 10 0.1016e � 2 – 0.2626e � 3 –
20 0.4954e � 4 4.358 0.1049e � 4 4.646
40 0.2166e � 5 4.515 0.3693e � 6 4.828
80 0.8497e � 7 4.672 0.1213e � 7 4.928

160 0.2976e � 8 4.836 0.3862e � 9 4.973
320 0.9998e � 10 4.896 0.1219e � 10 4.986

5-WENO 10 0.6756e � 2 – 0.5061e � 2 –
20 0.3081e � 3 4.455 0.1577e � 3 5.004
40 0.9525e � 5 5.016 0.4511e � 5 5.128
80 0.2970e � 6 5.003 0.1314e � 6 5.101

160 0.8681e � 8 5.096 0.3991e � 8 5.041
320 0.2297e � 9 5.240 0.1240e � 9 5.008

ENO-3 10 0.2174e � 1 – 0.1290e � 1 –
20 0.2778e � 2 2.968 0.1664e � 2 2.955
40 0.3802e � 3 2.869 0.2079e � 3 3.001
80 0.4581e � 4 3.053 0.2594e � 4 3.003

160 0.5436e � 5 3.075 0.3225e � 5 3.008
320 0.6897e � 6 2.979 0.4027e � 6 3.002
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The results are shown in Figs. 4a and 4b. FC-ENO-3 shows a significant improvement in shock captur-
ing and behaves better than TVD, and even better than ENO-3. The result of FC-ENO-5 is also slightly
better than 5-WENO. The results obtained with FC-TVD and FC-ENO-3, FC-TVD schemes are not
depicted in the figure because of these are almost the same.

(3) ou
ot þ ou

ox ¼ 0, � 1 6 x 6 1.
This equation is accepted as the third case where
uðx; 0Þ ¼

1
6
ðGðx; b; z� dÞ þ Gðx; b; zþ dÞ þ 4Gðx; b; zÞÞ; �0:8 6 x 6 �0:6;

1; �0:4 6 x 6 �0:2;

1� j10ðx� 0:1Þj; 0 6 x 6 0:2;
1
6
ðF ðx; a; a� dÞ þ F ðx; a; aþ dÞ þ 4F ðx; a; aÞÞ; 0:4 6 x 6 0:6;

0; otherwise
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Fig. 4a. Numerical results of example (2), N = 200, t = 6.
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Fig. 4b. Numerical results of case 2, N = 200, t = 6.
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Gðx; b; zÞ ¼ e�bðx�zÞ2 ; F ðx; a; aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxð1� a2ðx� aÞ2; 0Þ

q
; a ¼ 0:5; z ¼ �0:7; d ¼ 0:005; a ¼ 10;

b ¼ log 2=36d2.
The solution includes a smooth but narrow combination of Gaussians, a square wave, a sharp triangle
wave, and a half ellipse [19]. 200 grid points are used and the solution is intergraded up to t = 4 in
calculations. The results in Fig. 5 indicate that FC-ENO-3 performs better than TVD for four types
of waves, and although the ENO-3 needs more grid points than FC-ENO-3, its numerical results are still
less than FC-ENO-3 in most of regions, as shown in Fig. 5a. Fig. 5b shows that FC-ENO-3 is much bet-
ter than Ravichandran’s scheme. From Fig. 5c and its local enlarge figure in Fig. 5d, the FC-ENO-5
gives the most accurate results in all schemes for four types of waves.
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Fig. 5a. Numerical results of example (3), N = 200, t = 4.
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Fig. 5c. Numerical results of example (3), N = 200, t = 4.
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Fig. 5b. Comparisons of FC-ENO-3 and Ravichandran’s scheme (Ref. [8]).
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(4) Nonlinear transport equation. The nonlinear transport equation is used as the fourth test case and can be
written as
ou
ot
þ u

ou
ox
¼ 0; 0 6 x 6 2p;

uðx; 0Þ ¼ 0:3þ 0:7 sin x; 0 6 x 6 2p; with a periodic boundary condition.
The Lax–Friedrichs splitting method is used, in which f �ðuÞ ¼ 1
2
ðf ðuÞ � auÞ and a = maxu| f

0
(u)|. Figs.

6a–6d show the results at t = 2 with grid number of N = 80. For this case, the capability capturing
discontinuity of FC-ENO-3 is between TVD and ENO-3 in which more grid points are used (see Figs.
6a and 6b). The result of FC-ENO-5 is between ENO-3 and 5-WENO, as seen in Figs. 6c and 6d.
In order to check the influence of the high resolution fluxes used in Eq. (13) on accuracy in the case with
a discontinuity, we show point-wise errors for grid points of N = 10, 20, 40, 80 and 160 in Figs. 6e, 6f and
6g. We can see that these schemes are of a reduced accuracy only in a local region around the shock.
Following Eqs. (14) and (20) where there are h�j�1=2 ¼ ĥ

�
j�1=2 þOðDxnÞ, for the third-order FC-schemes,

n P 1; and for FC-ENO-5, n P 2. In Eq. (13), the limited (high resolution) fluxes h�j�1=2 are used at
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Fig. 6a. Numerical results of example (4), N = 80, t = 2.
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Fig. 5d. The local enlarged part of Fig. 5c.
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the points in a discontinuity, and the coefficients of h�j�1=2 are less than one, i.e., a±/b± < 1. So, in the
region away from the discontinuity, the effect of the limited fluxes on the accuracy become smaller
and smaller and Eq. (13) can retain its higher order of accuracy.

(5) Viscous Burgers equation. The viscous Burgers equation is our fifth case and written as
ou
ot
þ u

ou
ox
¼ 1

Re
o2u
ox2

; a 6 x 6 b; ð26aÞ

uðaÞ ¼ tanhð�aRe=2Þ;
uðbÞ ¼ tanhð�bRe=2Þ.

�
ð26bÞ
The steady solution of Eq. (26a) with boundary condition (26b) is u(x) = tanh(� x Re/2). At x = 0, the
shock is formed with a large Re number. The goal of this test case is to examine the stability and accu-
racy of the boundary formulas at the presence of a shock at the computational domain boundary. Doing



x

u

0 1 2 3 4 5 6
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

exact
FC-ENO-5
ENO-3
5-WENO

Fig. 6c. Numerical results of example (4), N = 80, t = 2.
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so in our computation, we take a = � 1 and b = 0, and the grid point number on N = 80. The central
difference scheme is applied for the second-order derivative. The results with Re = 102 and Re = 103

are shown in Figs. 7a and 7b. It can be seen that the boundary formulas are efficient in the case with
the shock.

(6) Sod problem. Sod problem is chosen as the sixth test case and its governing equation is one-dimensional
Euler equations:
o~U
ot
þ o~F

ox
¼ 0; ð27Þ
where ~U ¼ ðq; qu; qeÞT, ~F ¼ ðqu; qu2 þ p; uðqeþ pÞÞT, p = (c � 1)(qe � qu2/2), c = 1.4. The initial condi-
tion is
ðq; u; pÞ ¼
ð1:0,.0:0; 1:0Þ; when x 6 0:5;

ð0:125,.0:0; 0:1Þ; when x > 0:5.

�



x

u

3.5 4 4.5 5
-0.4

-0.2

exact
FC-ENO-5
ENO-3
5-WENO

Fig. 6d. The local enlarged part of Fig. 6c.
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Fig. 6e. Point-wise errors of the FC-TVD scheme.
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Fig. 6f. Point-wise errors of the FC-ENO-3 scheme.
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The initial data are those of the Riemann problem proposed by Sod in Ref. [22], and the case has become
a standard test problem for decades, see also Refs. [3–6]. The Steger–Warming flux splitting [21] is used
for the equation and results at time t = 0.14 are shown in Figs. 8a–8d. FC-ENO-3 is better than TVD
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Fig. 6g. Point-wise errors of the FC-ENO-5 scheme.
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Fig. 7a. Comparison between the FC-TVD scheme and TVD scheme.
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Fig. 7b. Comparison between the FC-ENO-5 scheme and 5-WENO scheme.
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and ENO-3, especially for the expansion wave as shown in Fig. 8c. Also, a slightly better improvement of
FC-ENO-5 over 5-WENO can be observable in Figs. 8d and 8e.

(7) Shu–Osher problem. Shu–Osher problem is the seventh example and it is governed with one-dimensional
Euler equations (27) with following initial condition:
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ðq; u; pÞ ¼
ð3:857143; 2:629369; 10:33333Þ; when x < �4;

ð1þ e sin 5x; 0; 1Þ; when x P �4.

�

Here, e = 0.2. This test case is taken from Ref. [5], and has been studied by several other authors (see
Refs. [10,11]), and represents a Mach 3 shock wave interacting with a sine entropy wave. The results
at time t = 1.8 are plotted in Fig. 9a–9c. The ‘‘exact’’ solutions (solid lines) are the numerical solutions
of WENO-5 scheme with grid points of N = 8000. For this case, it can be shown that FC-ENO-3 is
better than TVD (see Fig. 9b), and FC-ENO-5 is better than 5-WENO (see Fig. 9c).

(8) Two-dimensional linear conservation law with variable coefficients
ou
ot
þ oð�yuÞ

ox
þ oðxuÞ

oy
¼ 0; �1 6 x; y 6 1.
with periodic boundary conditions. The initial condition is chosen as the characteristic function of a
circle with radius 0.5 (Fig. 10a). The problem represents a solid body rotation and is used to investigate
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Fig. 9a. Density distributions of Shu–Osher problem with N = 200, t = 1.8. Density distributions calculated by (A) TVD, (B) FC-TVD,
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the grid orientation effect as in Ref. [7]. The results at t = 2 in a 100 · 100 points grid are shown in Figs.
10b and 10c. The initial circle stays round after rotation, it indicates that the grid orientation effect is not
strong and the result of the FC-ENO-5 is better than FC-ENO-3.

(9) Two-dimensional shock reflection problem. Two-dimensional Euler equations are solved for this problem
with following initial condition:
ðq; u; v; pÞ ¼
ð1:0; 2:9; 0:0; 0:714286Þ; ahead of the incident shock,

ð1:69997; 2:61934;�0:50633; 1:52819Þ; behind the incident shock.

�

This problem was proposed by Yee et al. [23] and has been widely discussed in the literatures. The incident
shock angle is 29� and a free stream Mach number is 2.9. The computational domain is [4 · 1] with uniform
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grid of 121 · 41 points. Steger and Warming’s flux vector splitting method [21] are applied to this case. Figs.
11a and 11b show the pressure contours computed by FC-ENO-3 and FC-ENO-5 schemes. From the com-
parison of the pressure coefficient distribution at y = 0.5 in Figs. 11c and 11d, the FC-ENO-3 is of higher
shock resolution than TVD scheme; FC-ENO-5 and 5-WENO give the same result in the region of incident
shock; but 5-WENO scheme shows its little downstream position of the reflected shock, and FC-ENO-5 and
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Fig. 11d. Contributions of pressure coefficients (FC-ENO-5, 5-WENO and TVD) at y = 0.5.
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TVD schemes indicate the shock in the same position, however, the resolution of the reflected shock simulated
with FC-ENO-5 is evidently better than that with TVD.
5. Conclusions

In this paper, a finite compact difference scheme only requiring bi-diagonal matrix inversion is proposed,
being much simpler than the commonly used compact schemes with tridiagonal matrix inversion. The known
high-resolution fluxes can be used in the compact relations to solve the numerical flux.

By introducing TVD and ENO limiters, the high-resolution and high-order FC-TVD, FC-ENO schemes
have been constructed. Numerical results show that the FC-schemes have higher-order of accuracy in smooth
region and can avoid spurious numerical oscillations in discontinuous region.

In addition, the boundary formulations, involving one boundary value for FC-TVD and FC-ENO-3, and
two boundary values for FC-ENO-5, were suggested. Numerical results demonstrated that the boundary
formulations are efficient, and do not influence the accuracy and essentially non-oscillatory property of the
FC-schemes.
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